ON THE EXCEPTIONAL CENTRAL SIMPLE NON-LIE MALCEV ALGEBRAS

BY

RENATE CARLSSON

ABSTRACT. Malcev algebras belong to the class of binary Lie algebras. Any Lie algebra is a Malcev algebra. In this paper we show that for each seven-dimensional central simple non-Lie Malcev algebra any finite dimensional Malcev module is completely reducible also for positive characteristics. This contrasts with each modular semisimple Lie algebra. As a consequence we get that the classical structure theory for characteristic zero is valid also in the modular case if semisimplicity is replaced by G₁-separability.

The Wedderburn principal theorem is proved for Malcev algebras.

1. Introduction. Structures in algebra and other fields connected with an alternative Cayley algebra show exceptional features. If C is an alternative algebra one recalls that the commutator algebra C^- with the product defined by $a \circ b := a \cdot b - b \cdot a$ is a Malcev algebra. Let D denote a Cayley algebra over a field k with $\operatorname{char}(k) \neq 2$, 3, and e the unit of D. Then any algebra A isomorphic to $D^-/k \cdot e$ is a central simple and non-Lie Malcev algebra and vice versa [4]. A is called an exceptional Malcev algebra of type G_1 , or of type G_1 . A is said to be of type C_M^- if A, or equivalently D is split.

Any Lie algebra is a Malcev algebra. Malcev modules are a generalization of Lie modules over Lie algebras. E. J. Taft conjectured that any finite dimensional Malcev module over a Malcev algebra of type G_1 is completely reducible also for positive characteristics. In the following we prove the conjecture for $\operatorname{char}(k) \neq 2$, 3 (Theorem 1). As is well known the analogous statement is false for any simple Lie algebra [3]. If $\operatorname{char}(k) = 0$ the complete reducibility is shown for semisimple Malcev algebras [4]. Our proof applies the classification of irreducible Malcev modules in [1].

The Wedderburn principal theorem was recently extended by E. L. Stitzinger to Malcev algebras if $\operatorname{char}(k) = 0$, and if the radical is \mathcal{L}_2 -potent [7]. We prove the theorem for an arbitrary radical R if $\operatorname{char}(k) = 0$, and for the modular case if A/R is G_1 -separable.

Received by the editors August 23, 1976.

AMS (MOS) subject classifications (1970). Primary 17A30, 17E05; Secondary 17B05, 17D05. Key words and phrases. Malcev algebras, Malcev modules, exceptional simple non-Lie Malcev algebras, exceptional complete reducibility, Wedderburn principal theorem, Lie algebras, Cayley algebras, Lie modules.

In the following we denote by k a field with char $(k) \neq 2$, 3. A and M are presumed finite dimensional k-vector spaces.

2. Definitions. Let A be a binary algebra over k. J: $A \times A \times A \to A$ denotes the Jacobi map with $(x, y, z) \mapsto J(x, y, z)$ where $J(x, y, z) \coloneqq xy \cdot z + yz \cdot x + zx \cdot y \cdot J$ alternates if $x^2 \coloneqq x \cdot x = 0$ for all $x \in A$. Let $x, y, z, t \in A$. We recall that a Malcev algebra A is defined by

$$x^2 = 0, (1)$$

and

$$J(x, y, xz) = J(x, y, z)x.$$
 (2)

Then we have

$$(xy \cdot z)t + (yz \cdot t)x + (zt \cdot x)y + (tx \cdot y)z = ty \cdot xz, \tag{3}$$

$$2tJ(x, y, z) = J(t, x, yz) + J(t, y, zx) + J(t, z, xy)$$
(4)

[5]. An A-bimodule is called a Malcev module over a Malcev algebra A if the semidirect sum or trivial extension $E := A \oplus M$ together with the product $(x + m) \cdot (y + m') := xy + xm' + my$ for $m, m' \in M$ is a Malcev algebra. M is called a Lie module over A if xm = -mx and J(x, y, m) = 0. For a Malcev module M the module nucleus N_M defined by $N_M := \{m \in M | \forall x, y \in A : J(x, y, m) = 0\}$ is the maximal Lie submodule. Subsequently, A always denotes a Malcev algebra, and M a Malcev module over A. We define an A-module homomorphism f of M into a second A-Malcev module M' by f(xm) = xf(m); if moreover f is injective, f is a monomorphism of the A-modules etc.

M is irreducible over A if $M \neq \{0\}$, and $\{0\}$ and M are the only submodules over A. If $M = \bigoplus M_i$, 1 < i < s, $s \in \mathbb{N}$, each M_i an irreducible submodule, then M is called completely reducible over A. Then equivalently for any submodule P there is a submodule N so that $M = P \oplus N$ [3]. If A is canonically considered as an A-bimodule, and M isomorphic to A then M is called regular. For A of type \mathbb{C}_M^- the irreducible Malcev modules are up to isomorphism the regular module and the one-dimensional zero module [1].

Let $\rho: A \to \operatorname{End}_k(M)$ denote the canonical representation with $\rho(x): m \mapsto mx$. k[Y] denotes the ring of polynomials in the indeterminate Y. A map φ of A into the subset of irreducible polynomials with $x \mapsto \varphi_x$ is called a *primary function*, a map of A in k a root. Then

$$M_{\varphi} := \{ m \in M | \forall x \in A \exists r \in \mathbb{N} : (\varphi_x(\rho(x)))^r(m) = 0 \}.$$

If $\varphi_x = Y - \gamma(x)$ for any x then M_{φ} is designated by M_{γ} or $M_{\gamma}(A)$. Set $_1(M_{\gamma}) := \{ m \in M | \forall x \in A : \rho(x)(m) = \gamma(x) \cdot m \}$. M_{φ} is called a *primary component*, and M_{γ} a root space. If $M_{\varphi} \neq \{0\}$ then φ is called *characteristic* or essential for M, and similarly for roots. A splits over M if for any $\rho(x)$ the

roots of its minimum polynomial m_x in k[Y] are in k. M is smooth if moreover those roots are distinct that is if any m_x is separable over k. A splitting subalgebra is defined in the obvious way.

We recall that for any nilpotent splitting subalgebra H there is a root space decomposition $A = \bigoplus A_{\gamma}$ with $\gamma \in \Delta$ [4, Lemma 5]; then

$$A_{\beta}A_{\gamma} \subset A_{\beta+\gamma} \quad \text{if } \beta \neq \gamma,$$
 (5)

$$A_B^2 \subset A_{2B} + A_{-B},\tag{6}$$

$$J(A_0, A_\beta, A_\beta) \subset A_{-\beta},\tag{7}$$

$$J(A_0, A_\beta, A_\gamma) = \{0\} \quad \text{if } \beta \neq \gamma, \tag{8}$$

$$J(A_{\beta}, A_{\gamma}, A_{\delta}) = \{0\} \quad \text{if } \beta \neq \gamma \neq \delta \neq \beta, \tag{9}$$

$$J(A_{\beta}, A_{\gamma}, A_{\gamma}) = \{0\} \quad \text{if } \beta \neq 0, \gamma, -\gamma, \tag{10}$$

for β , γ , $\delta \in \Delta$. A nilpotent subalgebra H of A is called a *Cartan subalgebra* if $H = A_0$ [4]. A is split if it has a splitting Cartan subalgebra.

Let \mathbb{Z}_3 denote the integers modulo 3, and let the elements of \mathbb{Z}_3 be represented by 1, 2, 3. Choose $v \in \mathbb{Z}_3$. If A is of type \mathbb{C}_M^- and $\varepsilon \in k \setminus \{0\}$ then A has a basis $T_{\varepsilon} = \{h, x_p, x_p' | v \in \mathbb{Z}_3\}$ with $x_p h = \varepsilon x_p$, $x_p' h = -\varepsilon x_p'$, $x_p x_{p+1} = 2x_{p+2}', x_p' x_{p+1}' = \varepsilon x_{p+2}, x_p x_p' = h$, and $x_p x_{p+1}' = x_p' x_{p+1} = 0$ [4], [5]. Hence for any v, $\{h, x_p, x_p'\}$ is a basis of a split simple three-dimensional Lie (Malcev) algebra B of type A_1 . Then $\{x_{p+1}, x_{p+2}'\}$ is the basis of a non-Lie Malcev module of type M_2 over B. If H is a splitting Cartan subalgebra of A, and $A_\alpha \oplus H \oplus A_{-\alpha}$ the corresponding root space decomposition, then we may choose T_{ε} with $H = \langle h \rangle$ and $x_p \in A_{\alpha}$ [4]. The module of type M_2 is up to isomorphism the only non-Lie Malcev module over the Lie algebra of type A_1 [1].

For two algebras B, C over k, $B \oplus C$ denotes their direct product. Similarly we designate the direct product of two A-submodules M_1 and M_2 by $M_1 \oplus M_2$. If X is a vector space over k, $x_i \in X$ with $1 \le i \le r$, $r \in \mathbb{N}$, let (x_1, \ldots, x_r) denote the subspace generated by the x_i . For a map $f: X \to Y$, Y a set, let $X^f := f(X)$. For further definitions see [1], [2], [4].

3. The exceptional decomposition of a module. Theorem 1 is preceded by four lemmas.

LEMMA 1. Let A be a Malcev algebra, H a nilpotent subalgebra, and M a Malcev module over A. If A = J(A, A, A), and $A = \bigoplus A_{\pi}$ with $\pi \in \Phi$ the primary decomposition over H then for M over H we have

$$M = \bigoplus M_{\pi} \text{ for } \pi \in \Phi.$$

PROOF. By base field extension we may consider roots instead of characteristic primary functions. Thus let $A = \bigoplus A_{\gamma}$, $\gamma \in \Delta$, be a *H*-root

space decomposition. Assume $M \neq \bigoplus M_{\gamma}$, $\gamma \in \Delta$. Then there exists $M_{\beta} \neq \{0\}$ with $\beta \notin \Delta$. From (8)–(10) then $J(M_{\beta}, A, A) = \{0\}$. By (4)

$$M_{\beta} \subset M_{\beta}A = M_{\beta}J(A, A, A) \subset J(M_{\beta}, A, A) = \{0\}.$$

Thus $M_{\beta} = \{0\}$, proving the lemma. \square

Let $h \in A$, $h \neq 0$. If $H = \langle h \rangle$ and α : $H \rightarrow k$ a k-linear map we may identify α with $\alpha(h)$. We have

LEMMA 2. Let A be a Malcev algebra, $h \in A$ with $h \neq 0$, and $H = \langle h \rangle$, M a Malcev module over A. Suppose that A and M are smooth over H. The root spaces are taken over H. Let $A = A_{\alpha} \oplus H \oplus A_{-\alpha}$ with $\alpha \neq 0$. For $\beta \in \{\alpha, -\alpha\}$ let $M_{2\beta} = \{0\}$. Then for $m \in M_{\beta}$, $n \in M_0$, and $x, y \in A_{\beta}$, $y' \in A_{-\beta}$ with $xy' = \delta h$, $\delta \in k$ we get

$$mx \cdot y' = -2my' \cdot x - 2\beta \delta m, \tag{11}$$

$$mx \cdot y = -m \cdot xy, \tag{12}$$

$$nx \cdot y = -n \cdot xy, \tag{13}$$

$$nx \cdot y' + \beta \delta n \in N_M. \tag{14}$$

PROOF. By (6) $M_{\gamma}A_{\gamma} \subset M_{-\gamma}$. For (11) observe

$$\beta my' \cdot x = (mh \cdot y')x \text{ and by (3)}$$

$$= -(hy' \cdot x)m - (y'x \cdot m)h - (xm \cdot h)y' + xh \cdot my'$$

$$= \beta \delta hm + \delta hm \cdot h + \beta xm \cdot y' + \beta x \cdot my'$$

$$= -2\beta^2 \delta m - \beta mx \cdot y' - \beta my' \cdot x.$$

Thus $mx \cdot y' = -2my' \cdot x - 2\beta \delta m$.

To obtain (12), consider

$$\beta mx \cdot x = (mh \cdot x)x$$
 and again by (3)
= $-(xm \cdot h)x + xh \cdot mx = -2\beta mx \cdot x$.

Hence $3\beta mx \cdot x = 0$, therefore, by $\operatorname{char}(k) \neq 3$ and $\beta \neq 0$, $mx \cdot x = 0$. Linearization gives $mx \cdot y = -my \cdot x$. Again applying (3)

$$\beta mx \cdot y = (mh \cdot x)y = -(hx \cdot y)m - (xy \cdot m)h - (ym \cdot h)x + yh \cdot mx$$
$$= -\beta m \cdot xy - \beta my \cdot x - \beta mx \cdot y,$$

and hence $mx \cdot y = -m \cdot xy$, which is (12).

To establish (13), from (3)

$$(nx \cdot x)h = -(xh \cdot n)x + hx \cdot nx = -\beta xn \cdot x - \beta x \cdot nx = 2\beta nx \cdot x.$$

Since $M_{2\beta} = \{0\}$ then $nx \cdot x = 0$. By means of linearization $nx \cdot y = -ny \cdot x$. Through further application of (3)

$$nx \cdot y = \beta^{-1}nx \cdot yh = \beta^{-1} \left\{ (yx \cdot h)n + (xh \cdot n)y + (hn \cdot y)x + (ny \cdot x)h \right\}$$
$$= -n \cdot xy - nx \cdot y - ny \cdot x = -n \cdot xy.$$

Let $w \in A_{\beta}$, and $w' \in A_{-\beta}$. For (14) we obtain by (3) and (13)

$$(nx \cdot y')w = -(xy' \cdot w)n - (y'w \cdot n)x - (wn \cdot x)y' + wx \cdot ny'$$

= $-\beta \delta nw - (n \cdot wx)y' - ny' \cdot wx = -\beta \delta nw$.

Noting (8) then $(nx \cdot y')w' = (ny' \cdot x)w' = -\beta \delta nw'$. Therefore $(nx \cdot y' + \beta \delta n) \cdot A_{\gamma} = \{0\}$ for $\gamma = 0$, α , $-\alpha$ which proves (14).

COROLLARY 1. Let A be split of type A_1 , M a Malcev module over A, H a splitting Cartan subalgebra of A, $H = \langle h \rangle$, and M smooth for H. For any root β of H with $\beta \neq 0$ and $A_{\beta} \neq \{0\}$ let $M_{2\beta} = \{0\}$.

Then

$$M = N_M \oplus . J(M, A, A).$$

J(M, A, A) is completely reducible over A.

PROOF. Let $M \neq N_M$. Take a basis $\{x_{\alpha}, x_{-\alpha}, h\}$ for A with $\alpha \in k \setminus \{0\}$, $x_{\alpha}x_{-\alpha} = h$ and $x_{\beta}h = \beta x_{\beta}$ for $\beta \in \{\alpha, -\alpha\}$. By smoothness, M is split over H. Since J alternates and (7)–(9) then $M = N_M + (M_{\alpha} \oplus M_{-\alpha})$. Let $m \in M_{\beta}$ with $mx_{\beta} \neq 0$. By $M_{2\beta} = \{0\}$ from (11) and (12)

$$(mx_{\beta} \cdot x_{-\beta})x_{\beta} = -2\beta \delta mx_{\beta}$$

with $x_{\beta}x_{-\beta} = \delta h \neq 0$. Hence $\langle mx_{\beta} \rangle \oplus \langle mx_{\beta} \cdot x_{-\beta} \rangle$ is an irreducible non-Lie submodule of type $M_2[1]$. Thus $P := M_{\alpha} \cdot x_{\alpha} \oplus M_{-\alpha} \cdot x_{-\alpha}$ is a sum of submodules of type M_2 . From (11) we have $M = P + N_M$. Since $J(mx_{\beta}, x_{\beta}, x_{-\beta}) = 3\beta\delta mx_{\beta}$ this sum is direct. Therefore $M = N_M \oplus J(M, A, A)$. The complete reducibility of J(M, A, A) is trivial. \square

LEMMA 3. Let A be of type C_M^- , H a splitting Cartan subalgebra, and M an A-Malcev module.

Then M is smooth over H.

PROOF. Since $N_M \cdot A = \{0\}$ the assertion is trivial for $M = N_M$. Let $M \neq N_M$, E the semidirect sum of A and M, and $H = \langle h \rangle$. We consider the root spaces over H. By Lemma 1, $M_{\gamma} \neq \{0\}$ implies $A_{\gamma} \neq \{0\}$. Now $E_0 = H \oplus M_0$. Since $J(H, M_0, E) = \{0\}$, from [5, Lemma 5.12] then $HM_0 \subset N_M$.

Thus $HM_0 \cdot A = \{0\}$. By this and (8) it follows that $M_0 A_{\gamma} \subset {}_{1}(M_{\gamma})$. Observing $A_{\beta} = A_{-\beta}A_{-\beta}$ for $\beta \neq 0$ and (3) one gets ${}_{1}(M_{\beta})A_{\beta} \subset {}_{1}(M_{-\beta})$. Hence the sum of H-eigen spaces of M is a submodule.

Let $n \in M_0$, $x \in A_{\beta}$, $x' \in A_{-\beta}$, $\beta \neq 0$, and xx' = h. With (14) and observing $nh = nx \cdot x' - nx' \cdot x$ together with $nx' \cdot x \in {}_{1}(M_0)$ then

$$\beta nx \cdot x' = -(nx \cdot x')x \cdot x' = -(nx' \cdot x)x' \cdot x = \beta nx' \cdot x.$$

Thus nh = 0, therefore $M_0 = {}_{1}(M_0)$. Consider now $m \in M_{\beta}$. We show $m \in {}_{1}(M_{\beta})$. Assume that $mh \neq \beta m$, and set $\hat{m} = mh - \beta m$. By (8) we then have $\hat{m}x' = mh \cdot x' - \beta mx' = mx' \cdot h = 0$, hence $\hat{m} \cdot A_{-\beta} = \{0\}$. Without

restriction let $\hat{m} \in {}_{1}(M_{\beta})$, and h, x_{ν}, x'_{ν} with $\nu \in \mathbb{Z}_{3}$ constitute a basis T_{β} . For $\mu, \nu \in \mathbb{Z}_{3}$ with $\mu \neq \nu$ set $x := x_{\mu}, x' := x'_{\mu}, y := x_{\nu}$. From (11) together with $\hat{m} \cdot A_{-\beta} = \{0\}$, and (3), (12) one derives $2\beta \hat{m}y = -(\hat{m}x \cdot x')y = \beta \hat{m}y$. Thus $\langle \hat{m} \rangle$ is irreducible over A, implying $\beta = 0$ in contradiction to $\beta \neq 0$. Therefore $M_{\beta} = {}_{1}(M_{\beta})$. \square

LEMMA 4. Let A be split of type G_1 , H and M as in Lemma 3, $H = \langle h \rangle$, and the root spaces taken over H.

If
$$\beta \neq 0$$
, $m \in M_{\beta}$, and $T_{\beta} = \{x_{\nu}, x'_{\nu}, h | \nu \in \mathbb{Z}_3\}$ then

$$\sum mx'_{\nu} \cdot x_{\nu} = -\beta m \quad \text{for } \nu \in \mathbb{Z}_{3}. \tag{15}$$

PROOF. Set $x := x_1, y := x_2, z := x_3, x' := x'_1$, and similarly for y', z'. We get

$$mx' \cdot x = -\frac{1}{2}(yz \cdot m)x \text{ and by (3)}$$

$$= \frac{1}{2}\{(zm \cdot x)y + (mx \cdot y)z + (xy \cdot z)m - xz \cdot ym\}$$

$$= my' \cdot y - mz' \cdot z + \beta m + my \cdot y' \text{ with (12),}$$

$$= -my' \cdot y - mz' \cdot z - \beta m \text{ by (11).}$$

Hence $mx' \cdot x + my' \cdot y + mz' \cdot z = -\beta m$ which is (15). \square

For a k-vector space and an extension field K of k we define $X_K := X \otimes_k K$. We get

THEOREM 1. Let A be a Malcev algebra of type G_1 and M a Malcev module over A.

Then M is completely reducible over A.

PROOF. For $M = N_M$ the theorem is trivial. Suppose $M \neq N_M$.

(1) Let A be of type C_M^- , and H a splitting Cartan subalgebra, $M = M_\alpha \oplus M_0 \oplus M_{-\alpha}$ the root space decomposition of M over H with $\alpha \neq 0$ according to Lemma 1. If $M = M_0$ then $M = N_M$ by Lemma 3. Thus let $M_\alpha \neq \{0\}$, and $m \in M_\alpha$, $m \neq 0$. From (15) there exists $z' \in A_{-\alpha}$ with $n := mz' \neq 0$. We show that n generates a regular submodule by an argument similar to that in [1]. Take the k-linear map $f: A \to M$ defined by

$$f(h) = n$$
, $f(x) = \beta^{-1} xn$ if $x \in A_{\beta}$

when $\beta \neq 0$. We claim that f is a module homomorphism over A. For $x, y \in A_{\beta}$, $\beta \neq 0$, we obviously have xf(h) = f(xh), hf(x) = f(hx), and by (13), xf(y) = f(xy). It remains to show for $y' \in A_{-\beta}$ that y'f(x) = f(y'x), equivalently

$$nx \cdot y' = -\beta \delta n \tag{16}$$

where $xy' = \delta h$, $\delta \in k$. We may restrict ourselves to a basis T_{β} of A corresponding to H with $x_{\nu} \in A_{\beta}$. Let $x_{\mu}x'_{\nu} = \delta h$, and $x_{\mu}x'_{\lambda} = \eta h$ with δ , $\eta \in k$, where λ , μ , $\nu \in \mathbb{Z}_3$. Then by (11) and (12)

$$(mx'_{\lambda} \cdot x_{\mu})x'_{\nu} = -\frac{1}{2}(mx_{\mu} \cdot x'_{\lambda})x'_{\nu} - \beta\eta mx'_{\nu}$$
$$= -\frac{1}{2}m(x_{\mu} \cdot x'_{\lambda}x'_{\nu}) - \beta\eta mx'_{\nu} = -\beta\delta mx'_{\lambda}.$$

We derive the last equality from the multiplication relations for T_{β} . Hence we have (16). Since $f(h) = n \neq 0$, f is an A-module monomorphism of A in M.

Thus $P := M_{\alpha} \cdot x_1' \oplus M_{\alpha} \oplus M_{-\alpha}$ obviously is a direct sum of regular submodules by (15). For $n' \in M_0$ from (14) then $p := n'x_1 \cdot x_1' + \beta n' \in N_M$. Hence $M_0 = N_M + P_0$. By $N_M A = \{0\}$ and (16) the sum is direct, and we have $M = N_M \oplus P$. N_M and P are completely reducible over A, hence M too.

(2) Suppose that A is not split. By [4] A has a Cartan subalgebra H with $H = \langle h \rangle$. Now $A = H \oplus A_{\pi}$ over H with $\pi_h = Y^2 - c(h)$ and $c(h) \in k \setminus k^2$. Then $M = M_0 \oplus M_{\pi}$ by Lemma 1. Let K denote a splitting field of π_h .

Set P := J(M, A, A). Then $M = N_M \oplus .$ P by the corresponding decomposition for M_K . For P_0 we choose a basis $\{n_i | 1 \le i \le s, s \in \mathbb{N}\}$. Let $P(i) := k \cdot n_i \oplus A \cdot n_i$. Then $P(i)_K = K \cdot n_i \oplus A_K \cdot n_i$. $P(i)_K$ is regular over A_K by (1). If f denotes the A_K -module monomorphism of A_K in M_K with $f(h) = n_i$ then f(A) is regular over A. Further

$$f(A) = f(k \cdot h) \oplus f(A \cdot h) = k \cdot f(h) \oplus A \cdot f(h) = P(i).$$

P(i) is irreducible, and $P = \bigoplus P(i)$ for $1 \le i \le s$. Hence M is completely reducible over A.

The theorem is proved. \square

The following propositions are well known if char(k) = 0 for the semi-simple case [2], [4]. They extend the classical structure theory to positive characteristics for the exceptional case.

PROPOSITION 2. Let $A = \bigoplus A_i$ with $1 \le i \le r$, $r \in \mathbb{N}$, where each A_i is of type G_1 . Let M be a Malcev module over A.

Then M is completely reducible over A.

Moreover $M = N_M \oplus . (\bigoplus . P_j)$ with 1 < j < s, $s \in \mathbb{N}_0$, $N_M A = \{0\}$, where for any index j there is an index i so that P_j is regular over A_i , and $P_j A_l = \{0\}$ if $l \neq i$ for 1 < l < r.

PROOF. If r=1 the first part of the statement is Theorem 1, and the second is a corollary of the proof of Theorem 1. We proceed by induction on the number of simple direct factors of A, and assume that the statement is valid for $r \in \mathbb{N}$. Let now $A = \bigoplus A_i$ with $1 \le i \le r+1$. Set $A' = \bigoplus A_i$, $2 \le i \le r+1$. We choose a Cartan subalgebra H of A. Then $H = H_1 \oplus H_2$, H_1 a Cartan subalgebra of A_1 and A_2 a Cartan subalgebra of A'.

If N(1) designates the nucleus of M over A_1 then

$$M = N(1) \oplus J(M, A_1, A_1)$$

is a sum of completely reducible A_1 -submodules of M. $J(M, A_1, A_1)$ decomposes into a direct sum of regular A_1 -submodules. We show that N(1) and $J(M, A_1, A_1)$ are submodules over A. For this we may assume that H is splitting over A. The root spaces of A for H unequal to H are just those of A_1 for H_1 and of A' for H_2 unequal to H_1 and H_2 . The corresponding characteristic roots γ are obvious. When $\gamma(H_1) \neq \{0\}$ then $\gamma(H_2) = \{0\}$ thus $A_{\gamma} \subset A_1$, and vice versa. Applying (4) and Lemma 3 together with (8)–(10) we get

$$J(M, A_1, A_1)A' \subset J(M, A_1, A') = \{0\}.$$

For example if $\beta(H_1) \neq \{0\}$ then $\beta(H_2) = \{0\}$ hence $J(M_\beta, A_\beta, H_2) = \{0\}$ by smoothness of A and M over H_2 . If Δ_1 is the set of the characteristic roots of H_1 in A_1 , let $(A_1)^1 := \bigoplus (A_1)_{\delta}(H_1)$ with $\delta \in \Delta_1 \setminus \{0\}$. From (8) for H_1 one has $N(1)A' \cdot (A_1)^1 = \{0\}$. Noting Lemma 3 then $N(1)A' \cdot A_1 = \{0\}$. Thus $N(1)A' \subset N(1)$.

Hence the above yields a direct sum of A-modules. By the induction hypothesis N(1) decomposes as asserted over A'. The proposition is evident. \square

The radical R of A is by definition the unique maximal solvable ideal. A is called semisimple if $R = \{0\}$. Separability is defined as usual. In case of $\operatorname{char}(k) = 0$ any semisimple Malcev algebra is separable by the nondegeneracy of the Killing form. A is called G_1 -separable if there is a base field extension K of k so that the base field extension A_K decomposes into a direct sum of algebras of type C_M .

Since the hypothesis of characteristic 0 in the proof of [2, Theorem 2] is only used to establish that M is reducible that proof actually gives the following slightly stronger result

PROPOSITION 3. Let A be a Malcev algebra and M a Malcev module over A. If A is G_1 -separable, then any derivation of A in M is inner. \square

COROLLARY 2. Let A be a Malcev algebra, and C a G_1 -separable subalgebra. Then any derivation of C in A can be extended to an inner derivation of A. \Box

For an ideal I of A let $\mathcal{K}^0(I) := I$ and $\mathcal{K}(I) := \mathcal{K}^{-1}(I) \cdot I + (\mathcal{K}^{-1}(I) \cdot I) \cdot A$ if $r \in \mathbb{N}$. I is called \mathcal{K} -nilpotent if $\mathcal{K}(I) = \{0\}$ for some $r \in \mathbb{N}$ [2]. The index $n_{\mathcal{K}}$ of \mathcal{K} -nilpotency is the minimal $n_{\mathcal{K}} \in \mathbb{N}$ with $\mathcal{K}^{n_{\mathcal{K}}}(I) = \{0\}$. Nilpotency and \mathcal{K} -nilpotency of I are equivalent. The nilradical N of A is by definition the maximal nilpotent ideal, hence $N \subset R$. We recall, if B is a subalgebra of A, and $A = B \oplus R$ then this decomposition is called a Wedderburn or Levi decomposition, and B a Wedderburn or Levi factor of A.

Similarly as in [2, Theorem 3] we get as a further consequence of Theorem

PROPOSITION 4. Let A be a Malcev algebra with radical R. $n_{\mathcal{K}}$ denotes the index of \mathcal{K} -nilpotency of the nilradical of A. Suppose that $\operatorname{char}(k) > 2n_{\mathcal{K}} - 1$. Let B be a Levi factor, and C a G_1 -separable subalgebra of A.

Then there is an inner automorphism α of A with

$$C^{\alpha} \subset B$$
.

COROLLARY 3. Let A be as in Proposition 4, and A/R G_1 -separable. Then any two Levi factors are conjugate by an inner automorphism of A. \square

4. The Wedderburn splitting. Let S be an ideal of A, and $S^2 = \{0\}$. Let $\varphi: A \to A/S$ with $x \mapsto \underline{x} = x + S$ denote the canonical map. If H is a nilpotent subalgebra of A and γ a linear root of H we define $\gamma: H^{\varphi} \to k$ by $\gamma(\underline{h}) = \gamma(h)$ if $h \in H$. Then obviously

$$(A_{\gamma}(H))^{\varphi} = (A^{\varphi})_{\gamma}(H^{\varphi}) \text{ and } (A_{\gamma}(H))^{\varphi} = A_{\gamma}(H)/S_{\gamma}(H).$$
 (17)

S is a Malcev module over A^{φ} in the canonical way. If $C \subset A^{\varphi}$ denote $C^{\varphi^{-1}} := \varphi^{-1}(C)$. Let $M_{\gamma}(h) := M_{\gamma}(\langle h \rangle)$.

LEMMA 5. Let S be an ideal of A with $S^2 = \{0\}$, and L an abelian subalgebra of A/S. Furthermore, let S be smooth over L. Then A contains a subalgebra H with $H^{\varphi} = L$ and $H^3 = \{0\}$.

PROOF. If $\dim(L) = 0$ the assertion is trivial. We use induction on the dimension of L and assume the statement of the lemma for some $n \in \mathbb{N}_0$. Suppose $\dim(L) = n + 1$ and $c \in L$, $c \neq 0$. By the hypothesis of the induction there exists a subalgebra T of A with $T^3 = \{0\}$, $T^{\varphi} \subset L$, $\dim(T^{\varphi}) = n$, and $c \notin T^{\varphi}$. Then $T \subset A_0(T)$, and $L \subset A_0(T)^{\varphi}$ by (17).

We choose $h \in A_0(T)$ with h = c. Further $S = \bigoplus S_{\gamma}(h)$ for $\gamma \in \Delta$ denotes the root space decomposition over h. Let $h_i \in T$ for $i = 1, \ldots, n$, the h_i linearly independent. Then $h_i h = \sum_i r_{\gamma}$ with $\gamma \in \Delta$ and $i r_{\gamma} \in S_{\gamma}(h) \cap A_0(T)$. Set $h_i^* := h_i - \sum_i \beta^{-1} i r_{\beta}$ for $\beta \in \Delta \setminus \{0\}$. Note $h_i^* \in A_0(T) \cap A_0(h)$. Let H be the subalgebra of A generated by h and the h_i^* for $i = 1, \ldots, n$. Hence $H \subset A_0(T) \cap A_0(h)$, and $H^2 \subset S_0(L)$. Thus $H^3 = \{0\}$. \square

Theorem 5. Let A be a Malcev algebra over k, R the radical of A, and char(k) = 0, or char(k) > 3. If char(k) > 3 let A/R be G_1 -separable.

Then A decomposes

$$A = B \oplus R$$

where B is a semisimple subalgebra of A with $B \cong A/R$.

PROOF. If $A/R = \{0\}$ or $R = \{0\}$ then the theorem is trivial. Assume that $A/R \neq \{0\}$ and $R \neq \{0\}$. By standard reduction we may assume $R^2 = \{0\}$, and R an irreducible A-Malcev module. Further we may suppose that k is

algebraically closed. So $A/R = \bigoplus C_i$ with $1 \le i \le n$, $n \in \mathbb{N}$, any C_i a simple split subalgebra. In the course of proof we will distinguish different cases. Let A := A/R, x := x + R, and $\varphi : x \mapsto x$.

- (1) Let $\overline{\operatorname{char}}(k) = 0$, A a Lie algebra, and R a Lie module over A. Then A is a Lie algebra: If $J(A, A, A) = \{0\}$ there is nothing to show. Otherwise J(A, A, A) = R. By Lemma 5 there is obviously a Cartan subalgebra H of A so that H^{φ} is a Cartan subalgebra of A, and $H^3 = \{0\}$. Decompose A into H-root spaces. Since $H = A_0$, then $J(\overline{A_0}, A_0, A_0) = \{0\}$. From $\dim((A_{\beta})^{\varphi}) \leq 1$ for $\beta \neq 0$ and R Lie we then have $J(A, A, A) = \{0\}$. Hence A is a Lie algebra for which the theorem is known.
- (2) It remains to treat the case that R is not a Lie module over \underline{A} , or \underline{A} is not a Lie algebra, or char(k) > 3 with \underline{A} G_1 -separable. We proceed by induction on the number n of the simple ideals of A.

Let n=1. Suppose that \underline{A} is a Lie algebra of type A_1 . Let $h \in A$ so that $\langle \underline{h} \rangle$ is a Cartan subalgebra of \underline{A} . Decompose A and R over h. Let us consider three cases for R. If R is the one-dimensional zero module then $R=\langle r_0 \rangle$ and $A=A_\alpha\oplus A_0\oplus A_{-\alpha}$, $\alpha\neq 0$, with $R\subset A_0$. We choose $h'\in A_\alpha A_{-\alpha}$ with h'=h. Then obviously $A_\alpha\oplus \langle h'\rangle\oplus A_{-\alpha}$ is a Levi factor of A.

If R is non-Lie then R is necessarily of type \mathbf{M}_2 over \underline{A} , and $R = R_{\alpha} \oplus R_{-\alpha}$ with $R_{\beta} = \langle r_{\beta} \rangle$ where $R_{\beta} \subset A_{\beta}$ for $\beta \in \{\alpha, -\alpha\}$. Let $x_{\beta} \in A_{\beta}$ with $\underline{x}_{\beta} \neq 0$. Then $J(x_{\alpha}, x_{-\alpha}, h) = 0$. Any Lie triple of elements generates a Lie subalgebra. Hence $\langle h, x_{\alpha}, x_{-\alpha} \rangle$ is a Levi factor of A.

Assume third that R is regular over A. Hence $A = A_{\alpha} \oplus A_{0} \oplus A_{-\alpha}$ with $A_{0} = \langle h, r_{0} \rangle$, $A_{\beta} = \langle x_{\beta}, r_{\beta} \rangle$ with $\beta \in \{\alpha, -\alpha\}$, and $r_{\beta} = \beta^{-1}x_{\beta}r_{0}$. Note that a canonic A-module isomorphism is induced by $h \mapsto r_{0}$, and $x_{\beta} \mapsto r_{\beta}$. Suppose that $\{\underline{x}_{\alpha}, \underline{x}_{-\alpha}, h\}$ is a standard basis for \underline{A} . After eventual substitutions $h - \gamma r_{0}/\alpha$, or $x_{-\alpha} - \delta r_{-\alpha}$ with $\gamma, \delta \in k$, for h or $x_{-\alpha}$ if necessary then $\langle x_{\alpha}, x_{-\alpha}, h \rangle$ is a Levi factor of A.

Now let \underline{A} be of type \underline{C}_M^- and R regular over \underline{A} . Take a basis T_α of \underline{A} , $T_\alpha = \{y_\nu, y_\nu', u | \nu \in \mathbb{Z}_3\}$ and set $C := \langle u, y_1, y_1' \rangle$. \overline{C} is a subalgebra of type A_1 . R has a C-decomposition

$$R = B_{1R} \oplus . N_{1R} \oplus . N_{2R},$$

with B_{1R} regular and N_{1R} , N_{2R} of type M_2 over C [1]. In view of the minimal solvable ideals of $C^{\varphi^{-1}}$, and its completely reducible radical, $C^{\varphi^{-1}}$ contains a Levi factor B_1 . Let x, x', $h \in B_1$ with $\underline{x} = y_1$, $\underline{x'} = y'_1$, $\underline{h} = u$, and $H := \langle h \rangle$. We decompose A over H into root spaces, $A = \overline{A_\alpha} \oplus A_0 \oplus A_{-\alpha}$.

We claim $A_{\gamma} = {}_{1}(A_{\gamma})$. For $\nu \in \{2, 3\}$ choose $x_{\nu} \in A_{\alpha}$, $x'_{\nu} \in A_{-\alpha}$ with $x_{\nu} = y_{\nu}$, $x'_{\nu} = y'_{\nu}$. Let $r_{0} \in R_{0}$, $r_{0} \neq 0$. If $\beta \neq 0$ and $z \in A_{\beta}$ set $r_{z} := \beta^{-1}zr_{0}$. Since a Lie triple x_{ν} , x'_{ν} , h generates a Lie subalgebra, $x_{\nu}h = \alpha x_{\nu} + \delta_{\nu}r_{x_{\nu}}$, with $\delta_{\nu} \in k$. We show $\delta_{\nu} = 0$. For

$$\alpha x_{\nu} x \cdot x' = x x_{\nu} \cdot x' h$$

$$= (x' x_{\nu} \cdot h) x + (x_{\nu} h \cdot x) x' + (h x \cdot x') x_{\nu} + (x x' \cdot x_{\nu}) h \quad \text{by (3)}$$

$$= \alpha x_{\nu} x \cdot x' + \delta_{\nu} (r_{x_{\nu}} \cdot x) x' + \alpha x_{\nu} h - \alpha x_{\nu} h - \delta_{\nu} r_{x_{\nu}} h$$

$$= \alpha x_{\nu} x \cdot x' - 3 \alpha \delta_{\nu} r_{x_{\nu}},$$

hence $\delta_{r} = 0$.

Therefore $A_{\alpha} = {}_{1}(A_{\alpha})$, and equally for $-\alpha$. Thus A is smooth for H. By Corollary 1, A is completely reducible over B_{1} . Hence

$$A = B_{1R} \oplus . B_1 \oplus . N_{1R} \oplus . N_{2R} \oplus . N_1 \oplus . N_2$$

with N_1 , N_2 of type M_2 over B_1 . We may assume x_2 , $x_3' \in N_1$ and x_3 , $x_2' \in N_2$. If $x_2x_2' = h + \eta r_0$ with $\eta \in k \setminus \{0\}$, replace x_2 by $x_2^* := x_2 - \eta r_{x_2}$. Hence we may suppose $x_2x_2' = h$.

We assert that $B := B_1 \oplus N_1 \oplus N_2$ is an algebra of type \mathbb{C}_M^- . We let $y := x_2$, $y' := x_2'$, $z := x_3$, $z' := x_3'$. Then

$$yz' = (2\alpha)^{-1} yh \cdot xy = (2\alpha)^{-1} \{ (xh \cdot y)y + (yx \cdot h)y \}$$
 by (3)
= $xy \cdot y = -2y \cdot z'$.

Thus yz' = 0. Similarly zy' = 0. Further

$$zz' = (2\alpha)^{-1}x'y' \cdot xy$$
, and with (3)
= $\frac{1}{2} \{xx' + yy'\} = h$.

From this with (3)

$$vz = \alpha^{-2}z'x' \cdot x'v' = 2x'$$

and similarly $y'z' = \alpha x$. Therefore $B^2 \subset B$. Hence B is a Levi factor of A.

If R is the one-dimensional zero module, take B_1 as before. Similarly A has a B_1 -module decomposition

$$A = B_1 \oplus . R \oplus . N_1 \oplus . N_2.$$

By a similar argument one derives that $B := B_1 \oplus N_1 \oplus N_2$ is a Levi factor. Thus the theorem is shown if \underline{A} is of type A_1 or of type C_M when $\operatorname{char}(k) \neq 2$, 3. Let $\operatorname{char}(k) = 0$. Then by $[\overline{1}, \text{Satz } 11]$ we know if \underline{A} is a simple Lie algebra not of type A_1 then R is a Lie module over \underline{A} , and the decomposition exists by (1). Hence we have shown the theorem for $\overline{n} = 1$.

We assume as induction hypothesis that the theorem is valid if \underline{A} has exactly n simple direct factors, $n \in \mathbb{N}$. Let $\underline{A} = \bigoplus .$ C_i , $1 \le i \le n+1$. By (1) and [1, Satz 11] the remaining part of the proof is obviously reduced to the case that C_1 is either of type C_M^- , or C_1 is of type A_1 with R non-Lie over C_1 . In the latter case by the classification R is a module of type M_2 over C_1 . Set $G := \bigoplus .$ C_i with $2 \le i \le n+1$. In view of [2, Theorem 1] or of Proposition 2 respectively, we have either $RC_1 = R$ and $RG = \{0\}$, or $RC_1 = \{0\}$.

Let B_1 be a Levi factor of $C_1^{\varphi^{-1}}$, existing by the preceding argument. H_1 denotes a Cartan subalgebra of B_1 . Now $RB_1 = R$, or $RB_1 = \{0\}$. In the first case let $\hat{A}_0 := (G^{\varphi^{-1}})_0(H_1)$. Hence $(\hat{A}_0)^{\varphi} = G$ by (17). By the induction hypothesis \hat{A}_0 contains a Levi factor B_2 . Take a Cartan subalgebra H_2 of B_2 , and set $H := H_1 \oplus .$ H_2 . Then $H^2 = \{0\}$ by smoothness. We decompose A into H-root spaces $A = \bigoplus A_{\gamma}$ with $\gamma \in \Delta$, Δ the set of characteristic roots of H in A.

If Δ_i is the set of the characteristic roots of H_i in B_i for $i \in \{1, 2\}$ and $\gamma \in \Delta_i$, let γ^* : $H \to k$ be the trivial linear extension with $\gamma^*(h) \coloneqq \gamma(h)$ if $h \in H_i$, and $\gamma^*(h) = 0$ for $h \in H_j$ if $j \in \{1, 2\}$ and $j \neq i$. Set $\Delta_i^* \coloneqq \{\gamma^* | \gamma \in \Delta_i^*\}$. Then $\Delta = \Delta_1^* \cup \Delta_2^*$. Hence $B_2 \subset H_2 \oplus (\bigoplus A_\beta)$, $\beta \in \Delta_2^* \setminus \{0\}$. Observing (17), $B_1 \subset (H_1 \oplus (\bigoplus A_\alpha)) + R$ with $\alpha \in \Delta_1^* \setminus \{0\}$. Because of $RB_2 = \{0\}$ and the composition of the root spaces with (5), $B_1B_2 = \{0\}$. Thus $B \coloneqq B_1 \oplus B_2$ is a Levi factor of A.

Finally suppose $RB_1 = \{0\}$. Decompose A as a B_1 -module, $A = B_1 \oplus R$. $R \oplus R$. $R \oplus R$ with $R \oplus R$ with $R \oplus R$ is a subalgebra. It contains a Levi factor $R \oplus R$ by the hypothesis of the induction. Thus $R \oplus R$ is a Levi factor of R.

This proves the theorem. \Box

REFERENCES

- 1. R. Carlsson, Malcev-Moduln, J. Reine Angew. Math. 281 (1976), 199-210. MR 52 #13968.
- 2. ____, The first Whitehead lemma for Malcev algebras, Proc. Amer. Math. Soc. 58 (1976), 79-84. MR 53 #13337.
- 3. N. Jacobson, *Lie algebras*, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 # 1345.
- 4. E. N. Kuzmin, *Malt'sev algebras and their representations*, Algebra i Logika 7 (1968), no. 4, 48-69 = Algebra and Logic 7 (1968), 233-244. MR 40 #5688.
- 5. A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458. MR 26 #1343.
- 6. G. B. Seligman, *Modular Lie algebras*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 40, Springer-Verlag, Berlin and New York, 1967. MR 39 #6933.
- 7. E. L. Stitzinger, Malcev algebras with J_2 -potent radical, Proc. Amer. Math. Soc. 193 (1975), 1-9. MR 51 #10424.

MATHEMATISCHES SEMINAR, UNIVERSITÄT HAMBURG, 2 HAMBURG 13, WEST GERMANY